Quantum phases and an anomaly of interacting fermionic atoms

W. Vincent Liu University of Pittsburgh http://www.pitt.edu/~wvliu

Two topics:

- I. Breached pair superfluidity. [with F. Wilczek, P. Zoller, E. Gubankova, M. Forbes]
- II. A quantum anomaly---chiral mass flow of atoms in p-wave resonance. [myself]

Breached pair superfluidity (BP)

Collaborators:

- M. Forbes (MIT graduate)
- E. Gubankova (MIT postdoc)
- F. Wilczek (MIT)
- P. Zoller (Innsbruck)

publications

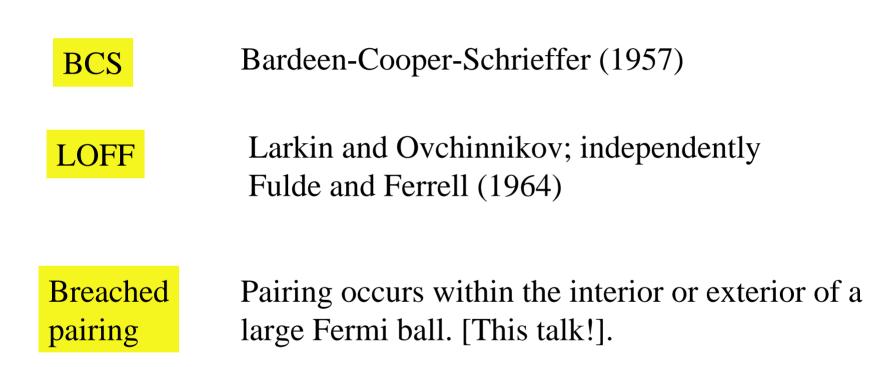
- 1. PRL **90**, 047002 (2003)
- 2. PRL **91**, 032001(2003)
- 3. PRA 70, 033603 (2004)
- 4. PRL 94, 017001 (2005)

News story: "Odd particle out", Phys. Rev. Focus (January 5, 2005; story 1)

Motivation: atomic Fermi gases

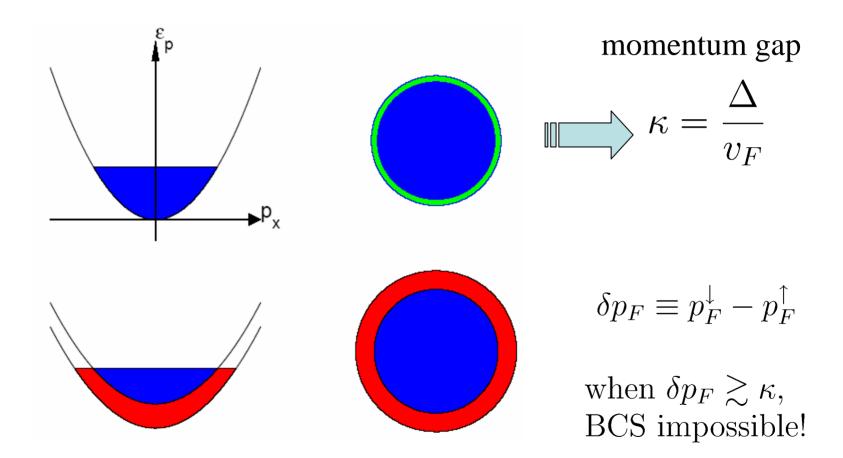
- BCS superfluidity of fermionic atoms
- BEC of molecules, BEC/BCS crossover, resonace models
- Pairing with mismatched fermi surfaces:
 - Two spin components are separately conserved; different densities
 - new pairing possibility? "breached pairing"
 - on-earth "atomic" simulator for color superconductivity in nuclear matter? (mismatched fermi surface in quark matter in neutron stars)

Different kinds of pairing

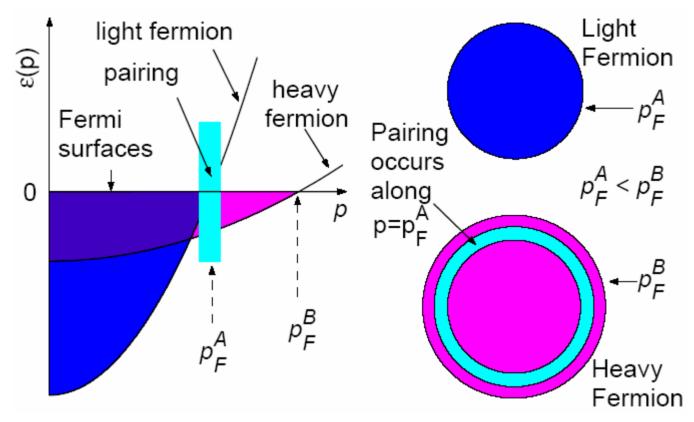


Heuristic introduction to BP

Recall BCS pairing



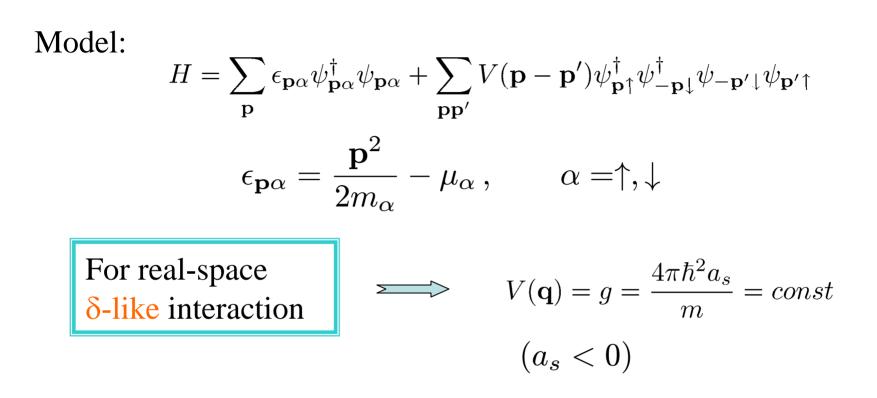
Breached Pair Superfluidity (BP)

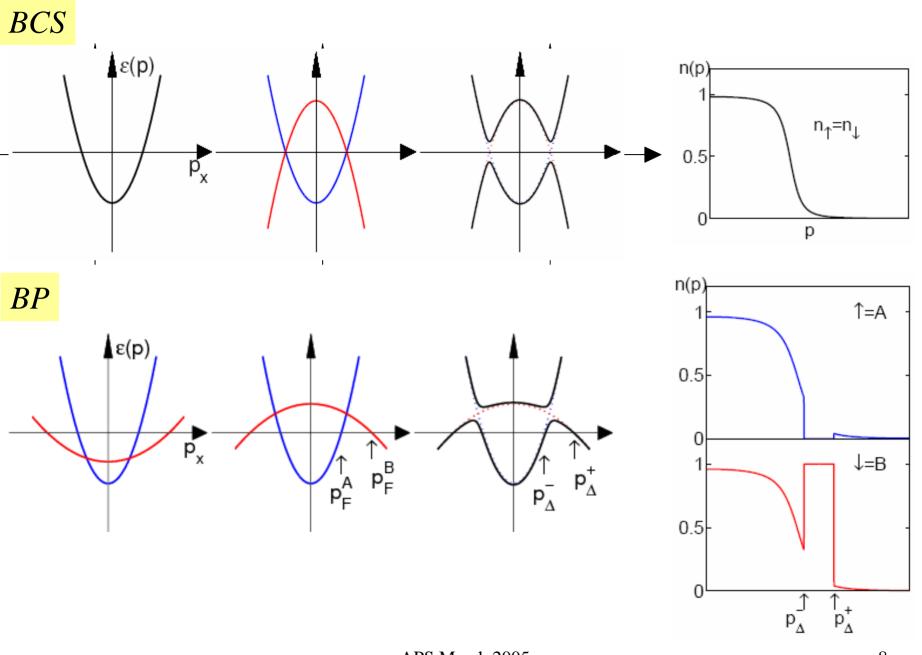


[WVL, F. Wilczek, PRL (2003)]

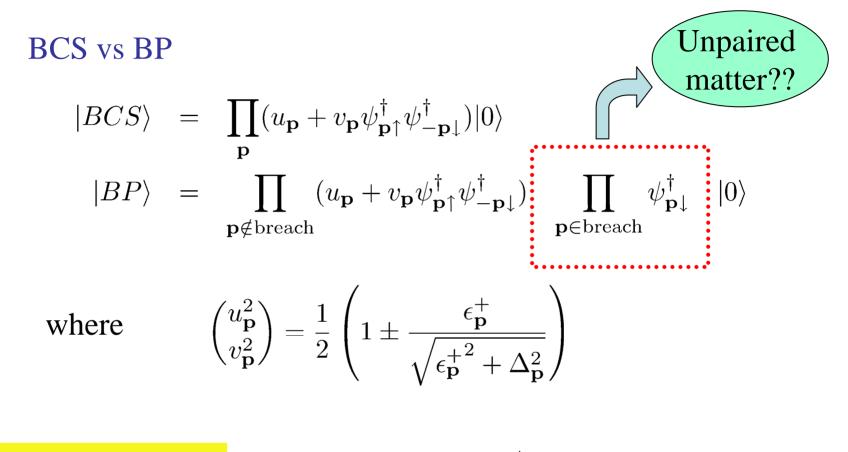
BP state = a superfluid + a normal Fermi liquid at T=0; has gapped and gapless quasiparticle excitations.

Mean field theory of BP





Many body wavefunction



"breach" region:

 $p_{\Delta}^{-} \le |\mathbf{p}| \le p_{\Delta}^{+}$

How stable?

The stability of BP criticized by:

- 1. Shin-Tza Wu, Sungkit Yip, PRA (2003)
- 2. P. F. Bedaque, H. Caldas, G. Rupak, PRL (2003); Caldas, PRA (2004)

Both are correct, but are done for a short-range delta-interaction.

Stability issue overcome and clarified in:

our latest [PRL 94, 017001 (2005)]

Need

- 1. a finite or long range interaction; or
- 2. *a momentum cutoff*

effective range

inter-atom distance

Effective range in real atomic gases

From <u>D. Petrov</u>, talk given at KITP Conference: Quantum gases 2004:

0	R_e [Å]	$B_0[G]$	$\Delta_{B}[G]$	$\partial E_{res}/\partial B$	a_{bg} [Å]	R* [Å]
⁶ Li	30	543.25	0.1	$2\mu_B$	32	19000
²³ Na	45	907	1	$3.7\mu_B$	33	260
⁸⁷ Rb	85	1007.4	0.17	$2.5\mu_B$	60	320
^{133}Cs	100	19.8	0.005	$0.55 \mu_B$	160	13000

[http://online.itp.ucsb.edu/online/gases_c04/petrov/]

Gas density:
$$n \sim 10^{14} \text{cm}^{-3} \Rightarrow k_F^{-1} \sim 1.0 \mu \text{m}$$

Case of strong coupling, short-range interaction, and equal mass

Quantum Monte Carlo results found:

A homogeneous, spin-polarized gapless superfluid [that is a BP] is favored against phase separation in real space.

[J. Carlson, Sanjay Reddy, cond-mat/0503256]

How to realize in atomic gases

A. Hetero-nuclear mixture of two species ${}^{6}\text{Li} + {}^{40}\text{K}, {}^{6}\text{Li} + {}^{86}\text{Rb}, \dots$

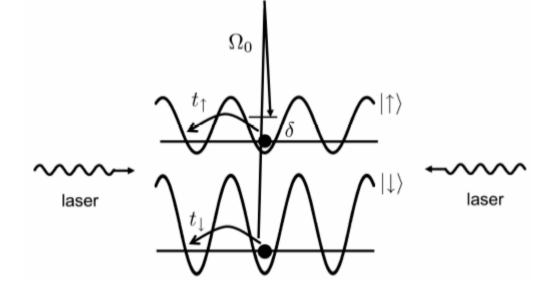
Make two species of unequal densities!

Hetero-nuclear resonance to generate attractive interactions.

B. Lattice atomic gases

Proposed experiment of fermionic atoms on lattice

[WVL, F. Wilczek, and P. Zoller, PRA (2004)]



incoherent & different densities or coherent by Rabbi oscillation but detuned

mismatched fermi surfaces

hopping matrix elements:

 $t_{\uparrow} \gg t_{\downarrow} \,, \quad t_{\alpha} \propto \frac{1}{m_{\alpha}}$

Key features of Breached Pair

- coexisting superfluid and normal components at T=0;
- phase separated in momentum space;
- both gapped and gapless quasiparticle excitations.

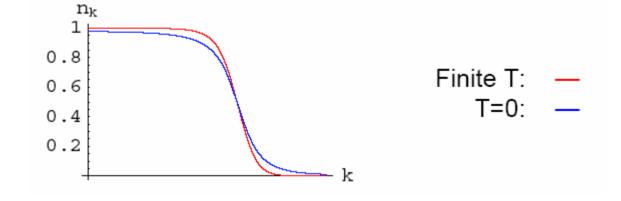
relevances to reality

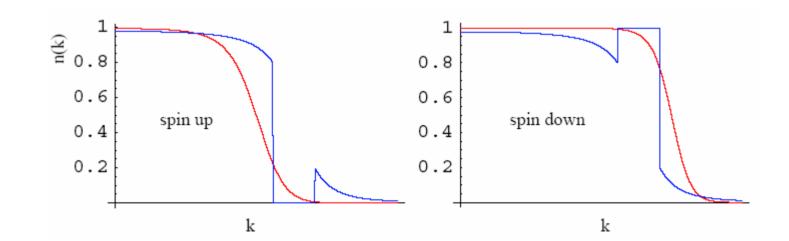
- realizable with cold atoms;
- may occur as a color superconductor in quark matter such as neutron stars
- "... other scenarios for uncondensed electrons should be considered, such as 'interior gap [BP] superfluidity'" for the heavy-fermion superconductor CeCoIn5 [*quote* <u>M. A. Tanatar</u>, <u>Louis Taillefer</u>, et al. cond-mat/0503342]

Signature of breached pair superfluidity

(A quantum phase transition from BCS to BP)

BP





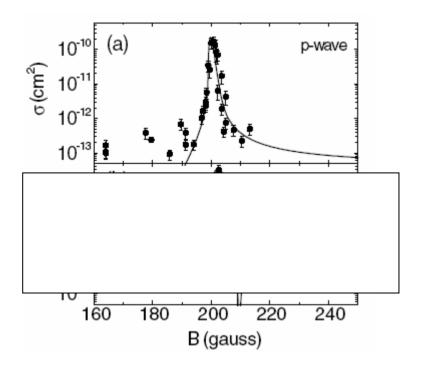
APS March 2005

Part 2. Chiral anomaly of an atomic Fermi gas in p-wave resonance

[WVL, submitted for publication, *to be posted* cond-mat/0503???]

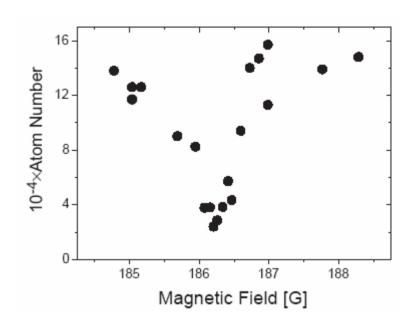
To discover ... a domain wall and an anomalous quantum mass flow on it

p-wave Feshbach experiments



⁴⁰K atoms in $|\frac{9}{2}, -\frac{7}{2}\rangle$. $T_F \sim 1\mu K \sim 0.01 G \times \mu_B$.

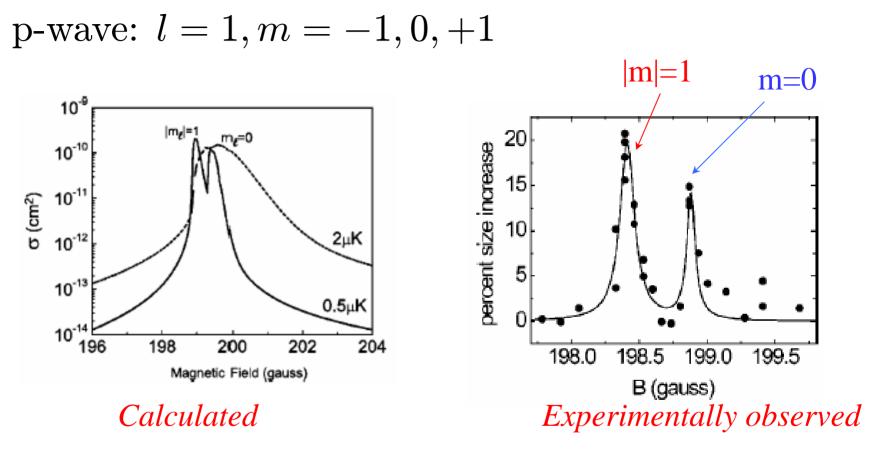
[Regal, Ticknor, Bohn and Jin, PRL (2003)]



⁶Li in
$$|\frac{1}{2}, \frac{1}{2}\rangle + |\frac{1}{2}, -\frac{1}{2}\rangle$$
.
 $T_F \sim 10\mu \text{K} \sim 0.1 \text{G} \times \mu_B$

[J.Zhang, C. Salomon, et al., cond-mat/0406085]

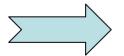
Anisotropy in p-wave Feshbach resonances



[by C. Ticknor, et al., PRA (2004)]

Fermi temperature: $T_F \sim 1 \mu \text{K} \sim 0.01 \text{G} \cdot \mu_B$

Theoretical modeling



strongly anisotropic interactions;
separate x,y orbitals from z orbital

APS March 2005

Planar p-wave model for fermionic atoms

Focus:

On p_x and p_y orbital interactions; All fermions in a single spin state.

Model:

$$H = \sum_{\mathbf{k}} \epsilon_{\mathbf{k}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}} + \frac{g}{2\mathcal{V}} \sum_{\mathbf{qkk'}} \vec{k} \cdot \vec{k'} a_{\frac{\mathbf{q}}{2} + \mathbf{k}}^{\dagger} a_{\frac{\mathbf{q}}{2} - \mathbf{k}}^{\dagger} a_{\frac{\mathbf{q}}{2} + \mathbf{k'}} a_{\frac{\mathbf{q}}{2} - \mathbf{k'}}$$

Notation:

★ boldface vector:
$$\mathbf{k} = (k^x, k^y, k^z)$$

★ arrow vector: $\vec{k} = (k^x, k^y) = \text{planar vector}$
★ $\epsilon_{\mathbf{k}} = \frac{\mathbf{k}^2}{2m} - \mu$
★ $\mathcal{V}=\text{space vol.;}$ $g=\text{coupling}$

The order parameter

p-wave pair operator:

$$\vec{\Phi}_{\mathbf{q}} = -\frac{g}{\mathcal{V}} \sum_{\mathbf{k}} \vec{k} \, a_{\frac{\mathbf{q}}{2} - \mathbf{k}} a_{\frac{\mathbf{q}}{2} + \mathbf{k}} \,.$$

Complex, 2-component vector

4 real variables

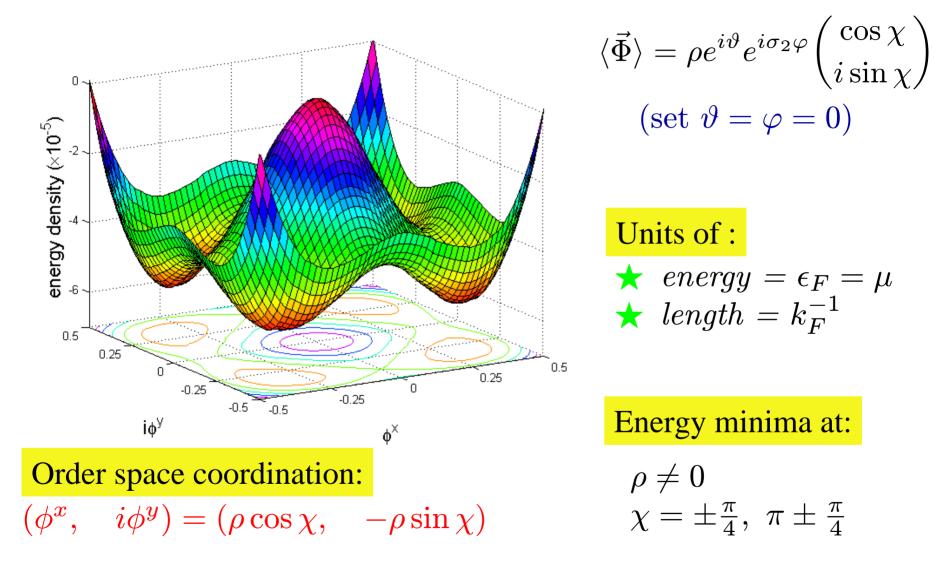
Parameterization:

$$\langle \vec{\Phi} \rangle \equiv \begin{pmatrix} \langle \Phi_{\mathbf{q}=0}^{x} \rangle \\ \langle \Phi_{\mathbf{q}=0}^{y} \rangle \end{pmatrix} = \rho e^{i\vartheta \mathbb{1}} e^{-i\varphi\sigma_{2}} \begin{pmatrix} \cos \chi \\ i\sin \chi \end{pmatrix},$$
$$2 \times 2 \qquad \text{Pauli matrix}$$

 ϑ =overall phase. φ =rotation angle in orbital space ϑ, φ are Goldstone bosons---gapless collective excitations.

APS March 2005

Calculated effective potential (free energy at T=0)



Analytical expression of the effective potential

$$V[\rho, \chi] = \frac{\rho^2}{2|g|} - \int \frac{d^3 \mathbf{k}}{2(2\pi)^3} \left[\sqrt{\epsilon_{\mathbf{k}}^2 + \rho^2 (k_x^2 \cos^2 \chi + k_y^2 \sin^2 \chi)} - |\epsilon_{\mathbf{k}}| \right]$$

Axial superfluid

for

$$\langle \vec{\Phi} \rangle = \frac{\rho_0}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm i \end{pmatrix}$$

$$\chi = \pm \frac{\pi}{4}$$

Known as:

In other p-wave models:

 $p_x + ip_y$ state; axial state; Anderson-Brinkman-Morel state (He-3 A phase);

first predicted by <u>Ho and Diener</u>, condmat/0408468 and independently by <u>Gurarie, Radzihovsky, Andreev</u>, condmat/0410620

Orbital angular mometum (macroscopic):

$$L_z^{\text{total}} = \pm \frac{N_0}{2}\hbar \quad \text{for} \quad \chi = \pm \frac{\pi}{4}.$$

 $N_0 = \text{ of atoms in condensed pairs}$

Effective field theory of the order parameter field

$$\langle \vec{\Phi}(\mathbf{r}) \rangle = \begin{pmatrix} \langle \Phi^x(\mathbf{r}) \rangle \\ \langle \Phi^y(\mathbf{r}) \rangle \end{pmatrix} = \rho_0 \begin{pmatrix} \cos \chi(\mathbf{r}) \\ i \sin \chi(\mathbf{r}) \end{pmatrix}$$
(spatially nonuniform)
($\rho_0 = \text{constant}$)

Free energy functional

$$F[\chi] = \frac{\rho_0^2}{C_\phi} \int d^3 \mathbf{r} \left[\frac{1}{2} (\nabla \chi)^2 + \frac{1}{4\xi^2} \left(1 + \cos(4\chi) \right) \right]$$

[sine-Gordon theory in 3D Euclidean space]

 $\begin{array}{l}\text{minimized}\\\text{by }\chi_{\pm}=\pm\frac{\pi}{4}\end{array}$

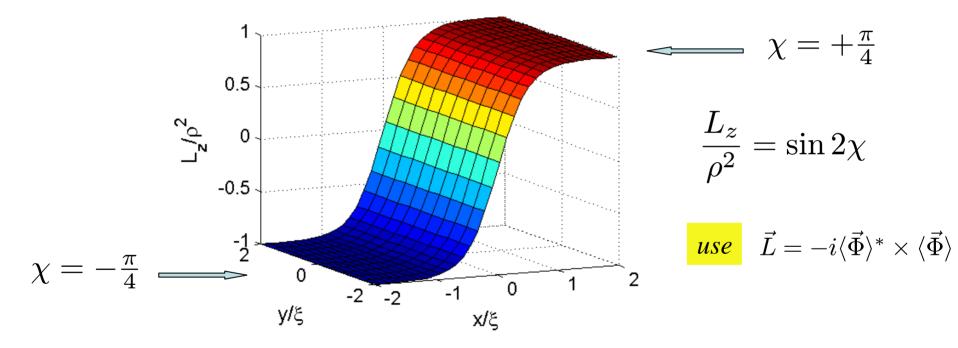
Physical understandings:

- 1. $\rho_0 = \Delta_0 / k_F$; $\Delta_0 =$ maximum energy gap
- 2. $C_{\phi} \simeq 1/(mk_F)$, nonuniversal (renormalizable), related to the mass of p-wave pairs (molecules).
- 3. $\xi \simeq \Delta_0 / v_F$ =coherence length

Domain walls as topological defects ---solitons

Solution to field equation

$$\chi_{\pm}(\mathbf{r}) = \pm \arctan\left(\tanh(x/\xi)\right)$$



 $\frac{domain \ wall \ energy}{per \ unit \ area} = \Delta_0^2 / (2C_\phi \xi k_F^2) \sim \Delta_0 / \xi^2$

Quantum anomaly

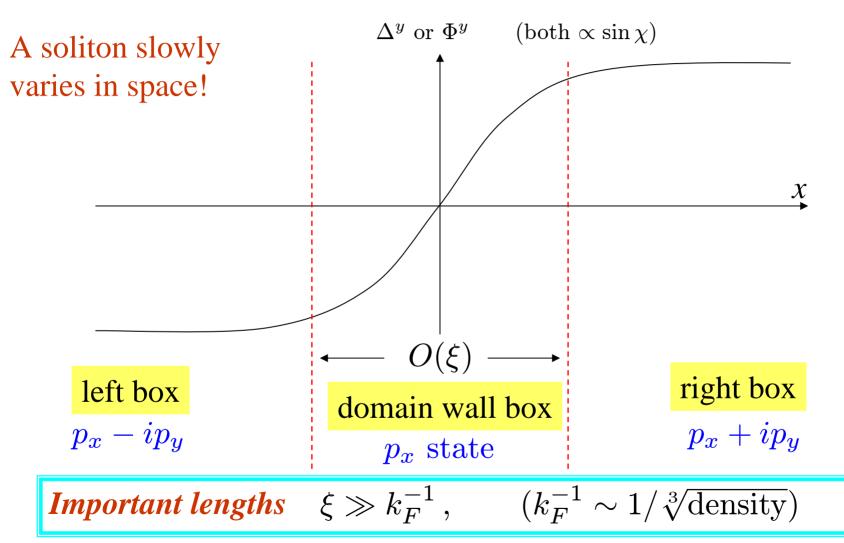
[chiral mass flow of atoms in the groundstate]

Heuristic steps to discover the anomaly

. . .

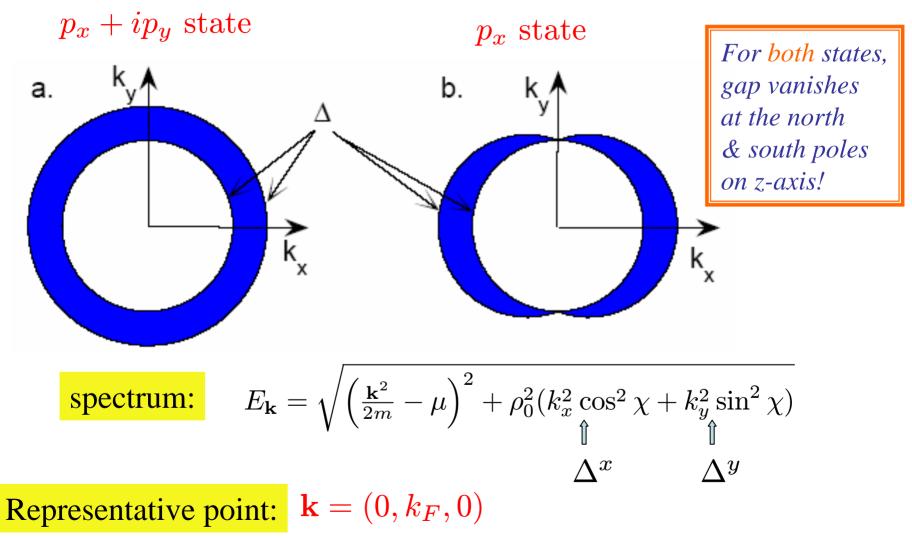
Anomaly (II)

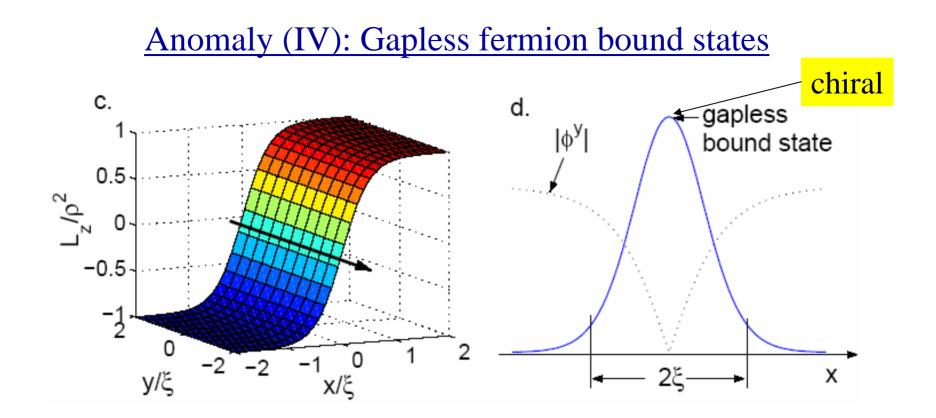
View of three macro-boxes



Anomaly (III)

The energy gap of quasiparticles (fermionic, atomic states)





Solve Bogoliubov-de Gennes equations (*similar to Jakiew-Rebbi* problem of Dirac fermions)

 $E = \pm \epsilon_{\mathbf{k}_{\parallel}} \text{ for } k_y \ge 0 \text{ or } \le 0$ with $\mathbf{k}_{\parallel} = (0, k_y, k_z)$

Found bound states analytically for $\xi \gg k_F^{-1}$

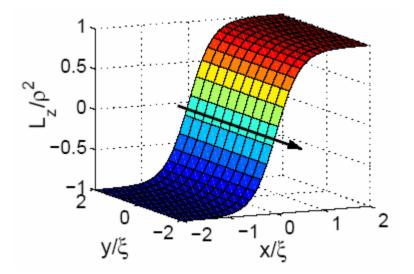
APS March 2005

<u>Anomalous quantum mass flow of atoms</u> in the groundstate (No additional external force!)

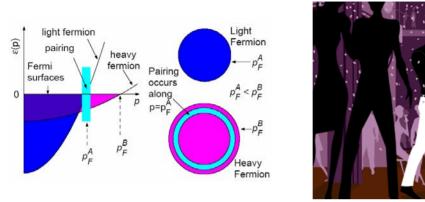
mass current per unit *z*-length:

$$\mathbf{j} = -\frac{\hbar k_F^3}{6\pi^2} \hat{e}_y \,,$$

(\hbar restored for clarity)



Summary



Breached Pair Superfluidity

[courtesy of Phys. Rev. Focus (Jan 2005)]

Domain wall quasiparticles and chiral anomaly in p-wave

