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Breached pair superfluidity (BP)

News story: “Odd particle out”, 
Phys. Rev. Focus (January 5, 2005; story 1)
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Outline

1. Motivation for new pairing
2. Heuristics of breached pair superfluidity (BP state)
3. Stability issue
4. Comment on recent developments: Strong-coupling BP
5. Experimental realization
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Part 1.  
Motivation for new pairing
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Current: Superfluidity in atomic Fermi gases of       6Li,40K, . . .

J. Thomas (Duke) W. Ketterle (MIT) M. Inguscio (Firenze)

C. Salomon (ENS, Paris)

R. Grimm (Innsbruck) D. Jin (JILA)

R. Hulet (Rice)



INT Sep 2005 6

Motivation: atomic Fermi gases

• BCS superfluidity of fermionic atoms. charge neutral; highly 
tunable; high Tc superfluidity (speculated by Demler, et al); …

• BEC of molecules, BEC/BCS crossover superfluids, 
pseudogap (relevant to high Tc superconductivity?), …

Pairing with mismatched fermi surfaces

The two spin components can have density imbalance
FFLO [Larkin and Ovchinnikov; Fulde and Ferrell, 1964]: 
indirect evidence in    heavy fermions (CeCoIn5?), ...
new pairing possibility? — “breached pairing”
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Part  2.
Heuristics of Breached Pair Superfluidity
(BP state)
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Different kinds of pairing

BCS Bardeen-Cooper-Schrieffer (1957)

FFLO Fulde and Ferrell (1964); independently 
Larkin and Ovchinnikov (1965)

Pairing occurs within the interior or exterior of a 
large Fermi ball. [This talk!].

Breached
pairing
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Heuristic introduction to BP

Recall BCS pairing

momentum gap 



INT Sep 2005 10

Recall FFLO paring

²↑(p+Q), ²↓(p)

FFLO superconducting state:

²↑(p), ²↓(p)

F momentum space: hψp+Q↑ψ−p↓i 6= 0
F modulation in position space: hψ↑(x)ψ↓(0)i ∼ eiQ·x , cos(Q · x) , . . .

For either BCS or LOFF: Tc ∼ EF e−
1

|g|N(0)

coupling density-of-state
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Breached Pair Superfluidity (BP)

BP state = a superfluid + a normal Fermi liquid at T=0; 
has gapped and gapless quasiparticle excitations.

[WVL, F. Wilczek, PRL (2003)]
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p

²(p)

Fermi level

A=

B=
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Heuristic of Breached Pair 

For a momentum gap of order κ:

To gain condensation 
energy per pair: ²pair = κ

Ã
p↑F
m↑

+
p↑F
m↓

!
>
p↓F

2 − p↑F
2

2m↓

To realize a breach: p↓F − p↑F > κ

Two conditions compatible if: 1 >
p↓F + p

↑
F

2p↑F

m↑
m↑ +m↓

.

The consistency condition can be satisfied
for arbitrarily small κ (weak coupling) when m↓ Àm↑.

Remark
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Weak coupling  BP

Model:

For real-space 
δ-like interaction

(as < 0)

²pα =
p2

2mα
− μα , α =↑, ↓
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BCS

BP
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Many body wavefunction

BCS vs BP Unpaired 
matter??

where

“breach” region: p−∆ ≤ |p| ≤ p+∆

²±p ≡
²p↑ ± ²p↓

2
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Many body wavefunction (continued)

“breach” region: p−∆ ≤ |p| ≤ p+∆

QP spectrum: E±
p = ²

−
p ±

q
²+p

2
+∆2

p.

E+pE
−
p = 0⇒ p±∆by
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Important features of breached pair (BP) state

1. a new kind of pairing;
2. coexisting superfluid and normal Fermi liquid 

components at T=0 (quantum state);
3. gapped and gapless quasiparticles
4. does not spontaneously break the translational and 

rotational symmetries
5. momentum-space phase separation

Feature summary
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Phase diagram (fixing two densities separately)

[adapted and modified from WVL and F. Wilczek, PRL (2003)]

obtained by variational method

V (p− p) =
½
g if both p,p0 near fermi surface
0 otherwise

Parameters:

m↑/m↓ = 7
∆pF ≡ p↑F − p↓F
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Part 3.
Stability of  BP
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How stable?

The stability of BP criticized by:
1. Shin-Tza Wu, Sungkit Yip, PRA (2003)
2. P. F. Bedaque, H. Caldas, G. Rupak, PRL (2003); Caldas, PRA 

(2004)

Both are correct, but are done for a short-range delta-interaction.

The stability issue was clarified in:

our latest [Forbes, et al, PRL 94, 017001 (2005)]
Need
1. a finite or long range 

interaction; or
2. a momentum cutoff effective range inter-atom distance

R∗ & k−1F
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Thermodynamic stability

F Work in a grand canonical ensemble

F Find the minima of Ω(T, V,μ↑,μ↓,∆): ∂Ω
∂∆ = 0,

∂2Ω
∂∆2 > 0.

F Garantee ∂ntotal
∂μ+

> 0; ∂ndiff∂μ−
> 0. [susceptibilities]

where μ± =
μ↑−μ↓
2

F specify the system by chemical potential instead of densities;
real-space phase separation is automatically taken care.

“… the condition for                    [superfluid density] is actually a slightly 
weaker requirement than the positive susceptibility …”

[Pao, Wu, and Yip, cond-mat/0506437]

ρs > 0
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Two models in Grand Canonical Ensemble

Momentum dependent interactions:
A. a separable potential with “hard” cutoff
B. a smooth Gaussian

H =
X
pα

²pαψ
†
pαψpα +

X
pp0

V (p− p0)ψ†p↑ψ†−p↓ψ−p0↓ψp0↑

Gap equation for both models:

∆p = −
1

2

X
k/∈breach

|V (p− k)|∆kq
²+k

2
+∆2k
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Model A: Interaction with “hard” cutoff

p↑F

p↓F
[Forbes, Gubankova, WVL, 
and Wilczek, PRL (2005)]

V (p− p0) ∼ θ(Λ− |p|)θ(Λ− |p0|)

F pαF ≡
√
2mαμα.

F momentum cutoff: Λ
F momentum unit ≡ 0.1Λ
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Grand thermodynamic potential
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Quasiparticles in Model A

E±p

p
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Phase diagram: Model B

Gaussian interaction potential V (r) ∼ exp
µ−r2
2λ2

¶

p↓F

p↑F

Parameters:
F pαF ≡

√
2mαμα.

F energy units: ~2
m+λ2

≡ 1.
F momentum unit = ~

λ .

[Forbes, Gubankova, WVL, 
and Wilczek, PRL (2005)]
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QPs for Model B

E±p

p
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Momentum dependence of energy gap 

This is very important in obtaining a positive
superfluid density for a weak-coupling BP. 
[Forbes, WVL, Wilczek, unpublished]

Note: ∆p 6= Constant;
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Part. 4
Recent development: strong coupling BP
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Case of strong coupling, 
short-range interaction, and equal mass

A homogeneous, spin-polarized gapless superfluid 
[that is a BP] is favored against phase separation 
in real space.

• Quantum Monte Carlo [J. Carlson, S. Reddy, PRL (2005)]
• Mean field theories

Single-channel resonance model [Pao, Wu, and Yip, cond-
mat/0506437]
two channel (atom-molecule) model [D. Sheehy, L. Radzihovsky, 
cond-mat/0508430]

• Effective field theory [D. Son, M. Stephenov, cond-mat/0507586]
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BP states of one or two fermi surfaces

weak coupling strong coupling

μ(∆ ∼ ²F ) < 0

kx

Ek

two fermi surfaces one fermi surface

m↑ = m↓m↑ < m↓

μ(∆) ≈ μ(∆ = 0) > 0
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Part 5. How to realize in atomic gases

B. Lattice atomic gases

A. Hetero-nuclear mixture of two species
6Li + 40K , 6Li + 86Rb , . . .

Make two species of unequal densities!

Hetero-nuclear resonance to generate attractive interactions.
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Proposed experiment of fermionic atoms on lattice

[WVL, F. Wilczek, and P. Zoller, PRA (2004)]

incoherent & different 
densities or coherent by 
Rabbi oscillation but detuned

mismatched fermi surfaces

t↑ À t↓ , tα ∝
1

mα

hopping matrix elements:



INT Sep 2005 35

Effective range in real atomic gases

From D. Petrov, talk given at KITP Conference: Quantum gases 2004:

Gas density: n ∼ 1014cm−3 ⇒ k−1F ∼ 1.0μm

[http://online.itp.ucsb.edu/online/gases_c04/petrov/]



INT Sep 2005 36

Signature of breached pair superfluidity

(A quantum phase transition from BCS to BP)

BCS

BP
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• coexisting superfluid and normal components at T=0;
• phase separated in momentum space;
• both gapped and gapless quasiparticle excitations.

• realizable with cold atoms;   
• may occur as a color superconductor in quark matter such as neutron 

stars
• “… other scenarios for uncondensed electrons should be considered,

such as ‘interior gap [BP] superfluidity’” for the heavy-fermion
superconductor CeCoIn5 [quote M. A. Tanatar, Louis Taillefer, et al. 
cond-mat/0503342]

Key features of  Breached Pair

relevances to reality
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Summary

[courtesy of Phys. Rev. Focus (Jan 2005)]

Breached Pair 
Superfluidity
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