Breached pair superfluidity

W. Vincent Liu University of Pittsburgh http://www.pitt.edu/~wvliu

Collaborators:

- M. Forbes (MIT graduate; now INT Postdoc)
- E. Gubankova (MIT postdoc)
- F. Wilczek (MIT)
- P. Zoller (Innsbruck)

publications

- 1. PRL **90**, 047002 (2003)
- 2. PRL **91**, 032001(2003)
- 3. PRA **70**, 033603 (2004)
- 4. PRL **94**, 017001 (2005)

Breached pair superfluidity (BP)

News story: "Odd particle out", Phys. Rev. Focus (January 5, 2005; story 1)

Outline

- 1. Motivation for new pairing
- 2. Heuristics of breached pair superfluidity (BP state)
- 3. Stability issue
- 4. Comment on recent developments: Strong-coupling BP
- 5. Experimental realization

Part 1. Motivation for new pairing

Current: Superfluidity in atomic Fermi gases of

C. Salomon (ENS, Paris)

Bosons	Fermions
	810 nK
	510 nK
	240 nK

R. Hulet (Rice)

W. Ketterle (MIT)

⁶Li,⁴⁰K,

M. Inguscio (Firenze)

Motivation: atomic Fermi gases

- BCS superfluidity of fermionic atoms. charge neutral; highly tunable; high Tc superfluidity (speculated by Demler, et al); ...
- BEC of molecules, BEC/BCS crossover superfluids, pseudogap (relevant to high Tc superconductivity?), ...

Pairing with mismatched fermi surfaces

- The two spin components can have *density imbalance*
- FFLO [Larkin and Ovchinnikov; Fulde and Ferrell, 1964]: indirect evidence in heavy fermions (CeCoIn5?), ...
- new pairing possibility? "breached pairing"

Part 2.Heuristics of Breached Pair Superfluidity (BP state)

Different kinds of pairing

Heuristic introduction to BP

Recall BCS pairing

Recall FFLO paring

FFLO superconducting state:

★ momentum space: $\langle \psi_{\mathbf{p}+\mathbf{Q}\uparrow}\psi_{-\mathbf{p}\downarrow}\rangle \neq 0$ ★ modulation in position space: $\langle \psi_{\uparrow}(\mathbf{x})\psi_{\downarrow}(0)\rangle \sim e^{i\mathbf{Q}\cdot\mathbf{x}}, \cos(\mathbf{Q}\cdot\mathbf{x}), \ldots$

For either BCS or LOFF:

$$T_c \sim E_F \ e^{-\frac{1}{|g|N(0)}}$$
 density-of-state

INT Sep 2005

Breached Pair Superfluidity (BP)

[WVL, F. Wilczek, PRL (2003)]

BP state = a superfluid + a normal Fermi liquid at T=0; has gapped and gapless quasiparticle excitations.

Heuristic of Breached Pair

For a *momentum* gap of order κ :

To gain condensation energy per pair:

$$\begin{split} \epsilon_{\text{pair}} &= \kappa \left(\frac{p_F^{\uparrow}}{m_{\uparrow}} + \frac{p_F^{\uparrow}}{m_{\downarrow}} \right) > \frac{p_F^{\downarrow}^2 - p_F^{\uparrow}^2}{2m_{\downarrow}} \\ p_F^{\downarrow} - p_F^{\uparrow} > \kappa \end{split}$$

To realize a breach:

$$1 > \frac{p_F^{\downarrow} + p_F^{\uparrow}}{2p_F^{\uparrow}} \frac{m_{\uparrow}}{m_{\uparrow} + m_{\downarrow}}.$$

Remark

The consistency condition can be satisfied for arbitrarily small κ (weak coupling) when $m_{\downarrow} \gg m_{\uparrow}$.

Weak coupling BP

Many body wavefunction

Many body wavefunction (continued)

"breach" region:
$$p_{\Delta}^{-} \leq |\mathbf{p}| \leq p_{\Delta}^{+}$$
 by $E_{\mathbf{p}}^{+} E_{\mathbf{p}}^{-} = 0 \Rightarrow p_{\Delta}^{\pm}$

QP spectrum: $E_{\mathbf{p}}^{\pm} = \epsilon_{\mathbf{p}}^{-} \pm \sqrt{\epsilon_{\mathbf{p}}^{+2} + \Delta_{\mathbf{p}}^{2}}.$

Important features of breached pair (BP) state

Feature summary

- 1. a new kind of pairing;
- 2. coexisting superfluid and normal Fermi liquid components at T=0 (quantum state);
- 3. gapped and gapless quasiparticles
- 4. does not spontaneously break the translational and rotational symmetries
- 5. momentum-space phase separation

Phase diagram (fixing two densities separately)

 $V(\mathbf{p} - \mathbf{p}) = \begin{cases} g & \text{if both } \mathbf{p}, \mathbf{p}' \text{ near fermi surface} \\ 0 & \text{otherwise} \end{cases}$ Parameters: $m_{\uparrow}/m_{\downarrow} = 7$ $\Delta p_F \equiv p_F^{\uparrow} - p_F^{\downarrow}$ Breached Pairing BCS 0.2 Superfluid FFLO or δ phase separation Normal State 0 0.05 0.15 0.2 01 $\Delta \textbf{p}_{\textrm{F}}/\textbf{p}_{\textrm{F}}^{\textrm{avg}}$

[adapted and modified from WVL and F. Wilczek, PRL (2003)]

obtained by variational method

Part 3. Stability of BP How stable?

The stability of BP criticized by:

- 1. Shin-Tza Wu, Sungkit Yip, PRA (2003)
- 2. P. F. Bedaque, H. Caldas, G. Rupak, PRL (2003); Caldas, PRA (2004)

Both are correct, but are done for a short-range delta-interaction.

The stability issue was clarified in:

our latest [Forbes, et al, PRL 94, 017001 (2005)]

 \gtrsim

Need

- 1. a finite or long range interaction; or
- 2. *a momentum cutoff*

effective range

Thermodynamic stability

 \star Work in a grand canonical ensemble

★ Find the minima of $\Omega(T, V, \mu_{\uparrow}, \mu_{\downarrow}, \Delta)$: $\frac{\partial \Omega}{\partial \Delta} = 0, \ \frac{\partial^2 \Omega}{\partial \Delta^2} > 0.$

★ Garantee
$$\frac{\partial n_{\text{total}}}{\partial \mu_{+}} > 0$$
; $\frac{\partial n_{\text{diff}}}{\partial \mu_{-}} > 0$. [susceptibilities]
where $\mu_{\pm} = \frac{\mu_{\uparrow} - \mu_{\downarrow}}{2}$

 \star specify the system by chemical potential instead of densities; real-space phase separation is automatically taken care.

"... the condition for $\rho_s > 0$ [superfluid density] is actually a slightly weaker requirement than the positive susceptibility ..." [Pao, Wu, and Yip, cond-mat/0506437] Two models in Grand Canonical Ensemble

$$H = \sum_{\mathbf{p}\alpha} \epsilon_{\mathbf{p}\alpha} \psi^{\dagger}_{\mathbf{p}\alpha} \psi_{\mathbf{p}\alpha} + \sum_{\mathbf{p}\mathbf{p}'} V(\mathbf{p} - \mathbf{p}') \psi^{\dagger}_{\mathbf{p}\uparrow} \psi^{\dagger}_{-\mathbf{p}\downarrow} \psi_{-\mathbf{p}'\downarrow} \psi_{\mathbf{p}'\uparrow}$$

Momentum dependent interactions:

- A. a separable potential with "hard" cutoff
- B. a smooth Gaussian

Gap equation for both models:

$$\Delta_{\mathbf{p}} = -\frac{1}{2} \sum_{\mathbf{k} \notin \text{breach}} \frac{|V(\mathbf{p} - \mathbf{k})| \Delta_{\mathbf{k}}}{\sqrt{\epsilon_{\mathbf{k}}^{+2} + \Delta_{\mathbf{k}}^{2}}}$$

Grand thermodynamic potential

Quasiparticles in Model A

Phase diagram: Model B

QPs for Model B

Momentum dependence of energy gap

Note: $\Delta_{\mathbf{p}} \neq \text{Constant};$

This is very important in obtaining a positive superfluid density for *a weak-coupling BP*. [Forbes, WVL, Wilczek, unpublished]

Part. 4 Recent development: strong coupling BP

Case of strong coupling, short-range interaction, and equal mass

- Quantum Monte Carlo [J. Carlson, S. Reddy, PRL (2005)]
- Mean field theories
 - Single-channel resonance model [Pao, Wu, and Yip, condmat/0506437]
 - two channel (atom-molecule) model [D. Sheehy, L. Radzihovsky, cond-mat/0508430]
- Effective field theory [D. Son, M. Stephenov, cond-mat/0507586]

A homogeneous, spin-polarized gapless superfluid [that is a BP] is favored against phase separation in real space.

BP states of one or two fermi surfaces

two fermi surfaces

one fermi surface

Part 5. How to realize in atomic gases

A. Hetero-nuclear mixture of two species ${}^{6}\text{Li} + {}^{40}\text{K}, {}^{6}\text{Li} + {}^{86}\text{Rb}, \dots$

Make two species of unequal densities!

Hetero-nuclear resonance to generate attractive interactions.

B. Lattice atomic gases

Proposed experiment of fermionic atoms on lattice

[WVL, F. Wilczek, and P. Zoller, PRA (2004)]

incoherent & different densities or coherent by Rabbi oscillation but detuned

mismatched fermi surfaces

hopping matrix elements:

 $t_{\uparrow} \gg t_{\downarrow} \,, \quad t_{\alpha} \propto \frac{1}{m_{\alpha}}$

Effective range in real atomic gases

From <u>D. Petrov</u>, talk given at KITP Conference: Quantum gases 2004:

	R_e [Å]	$B_0[G]$	$\Delta_{B}[G]$	$\partial E_{res}/\partial B$	a_{bg} [Å]	R* [Å]
⁶ Li	30	543.25	0.1	$2\mu_B$	32	19000
²³ Na	45	907	1	$3.7\mu_B$	33	260
⁸⁷ Rb	85	1007.4	0.17	$2.5\mu_B$	60	320
^{133}Cs	100	19.8	0.005	$0.55 \mu_B$	160	13000

[http://online.itp.ucsb.edu/online/gases_c04/petrov/]

Gas density:
$$n \sim 10^{14} \text{cm}^{-3} \Rightarrow k_F^{-1} \sim 1.0 \mu \text{m}$$

Signature of breached pair superfluidity

(A quantum phase transition from BCS to BP)

BP

INT Sep 2005

Key features of Breached Pair

- coexisting superfluid and normal components at T=0;
- phase separated in momentum space;
- both gapped and gapless quasiparticle excitations.

relevances to reality

- realizable with cold atoms;
- may occur as a color superconductor in quark matter such as neutron stars
- "... other scenarios for uncondensed electrons should be considered, such as 'interior gap [BP] superfluidity'" for the heavy-fermion superconductor CeCoIn5 [*quote* M. A. Tanatar, Louis Taillefer, et al. cond-mat/0503342]

Summary

Breached Pair Superfluidity

[courtesy of Phys. Rev. Focus (Jan 2005)]