
Selected Topics in Modern Many-Body

Theory

Lectures distributed in 2013 “Theoretical and Experimental Foundation for

Cold Atoms” Summer School of Department of Physics at Tsinghua

University in Beijing, China on July 8-10, 2013

W. Vincent Liu
Department of Physics and Astronomy

University of Pittsburgh

Web link:
http://liu.phyast.pitt.edu/lectures/2013-TsinghuaNote.pdf

[Revision: July 8, 2013]

Contents

1 Topological states in one dimension 2
1.1 Example: Kitaev quantum wire model . . . . . . . . . . . . . 2
1.2 Topoogical winding number. . . . . . . . . . . . . . . . . . . . 3
1.3 Domail wall (soliton) bound states. Fermion zero mode . . . 4
1.4 Majorana fermion. . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Effective field theory approach to superconductivity 8
2.1 Renormalization group analysis of Fermi surface instability:

Polchinski approach . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 BCS superconductivity: fermionic excitations . . . . . . . . . 11
2.3 Green’s function, mometum distribution, etc. . . . . . . . . . 15
2.4 Weinberg Effective Field Theory approach to broken U(1)

symmetry and superconductivity . . . . . . . . . . . . . . . . 16



Copyright c©W. Vincent Liu 2013 1

Notation and General Remarks

1. Throughout this note, we use the units of ~ ≡ 1, unless restored ex-
plicitly when necessary.

2. Most presentations are derived without giving historic references. It
does not mean we claim originality here, but some derivations and
results are.

3. This is a course note meant to save students’ time in taking notes from
blackboard. It will be complemented by blackboard derivations and
illustrations.

4. The note is far from being carefully checked yet. Appreciate anyone re-
porting typos, errors in derivations, etc. by email (w.vincent.liugmail.com)
or directly in classroom.
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1 Topological states in one dimension

1.1 Example: Kitaev quantum wire model

We shall introduce Kitaev’s quantum wire model and use it an example to
study topological numbers and one of the powerful mapping methods in 1D,
Jordan-Wigner transformation.

Kitaev introduced an interesting 1D lattice quantum wire model of fermions
(say, electrons with all spins polarized in one direction) that demonstrates
the existence of topologically protected Majorana zero edge modes. The
Hamiltonian reads

H =
∑
j

[
−w(c†jcj+1 + h.c.)− µ(c†jcj −

1

2
) + (∆cjcj+1 + h.c.)

]
(1)

where j = −(L/2a) + 1, . . . , (L/2a) with L the length of the wire and a the
lattice constant, and hence L/a the total number of sites of the lattice. The
U(1) symmetry is explicitly broken by a finite ∆, which in general is com-
plex. The superconducting gap parameter ∆ is thought to be arising from
proximity effect, i.e., it is assumed that this 1D quantum wire is put next
to a 3D superconductor with mutual electron tunneling. Without loosing
generality, let us assume ∆ real.

By Fourier transforming the fermion operators,

cj =
1√
L

∑
k

eikjack (2)

ck =
1√
L

∑
j

e−ikjacj (3)

the above Hamiltonian is diagonal in momentum space,

H =
∑
k

[
− (2w cos(ka) + µ) c†kck + (i∆ sin(ka)c−kck + h.c.)

]
+Const. (4)

The Hamitonian is quadratic in the fermion operators. Using Nambu spinor

ψk ≡
(
ck

c†−k

)
, (5)

re-write the Hamiltonian

H =
1

2

∑
k

ψ†kK (k)ψk (6)
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where the K is a 2× 2 matrix function of momentum k,

K (k) =

(
−(2w cos(ka) + µ) −2i∆∗ sin(ka)

2i∆ sin(ka) (2w cos(ka) + µ) .

)
(7)

In the basis of Pauli matricies, this Hamitonian K matrix may be repre-
sented by a vector h(k), defined by the matrix equation

K (k) = h(k) · σ , h(k) = (0, 2∆ sin(ka) ,−2w cos(ka)− µ) . (8)

Here, without loss of generality, we had chosen the phase of the gap param-
eter to be 0, so that the “Hamiltonian” h(k) vector is 2-component.

Here is an important note: for non-trivial topology (to be elaborated
below), it is crucial that the two “spin” components of h(k) depend on the
orthogonal basis functions, sin and cos, separately and both are periodic in k.
For a general complex ∆∗, h is a 3-component vector. Nevertheless, one can
verify that the presumed hx component will denpend on k through sin(ka),
exactly in the same manner as hy. Thus, h can always be transformed
into the above planar form (i.e., have one component eliminated), by a
unitary “rotation” of the Pauli matrices, which is equivalent to a “Nambu-
spin”-dependent rotation in the Nambu spinor space. Therefore, as far as
k-functional dependence is concerned for topology purpose, it is perfectly
fine to “rotate” the phase of the gap parameter ∆ to 0.

The energy spectrum can be quickly obtained by finding the eigenvalues
of the K matrix,

Ek = ±
√

(2w cos(ka) + µ)2 + 4|∆|2 sin2(ka) (9)

Half filling µ = 0. To make a concrete discussion, let us consider half
filling case, corresponding to the chemical potential µ = 0. Verify that the
lower and upper branches of the spectrum are well seperated by a gap of
4|∆|. The fermi level lies in between (i.e., the line of zero energy, µ = 0, in
the k-space). The spectrum is fully gapped.

1.2 Topoogical winding number.

Again, for concreteness, study the case of µ = 0. Verify that the h(k)
vector has a non-vanishing magnitude in the whole mometum space, i.e.,
1st Brillouin zone (1BZ), k ∈ [−π/a,+π/a]. Then, define a unit vector

ĥ(k) ≡ h(k)

|h(k)|
, (|ĥ| = 1) . (10)
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A topological invariant (winding number in this case) for h is then expressed
by

W =

∮
1BZ

dk

4π
εαβĥ

−1
α

∂ĥβ
∂k

, indices α, . . . = y, z two components (11)

and εαβ is a standard anti-symmetric tensor. The close contour integral
means integration over a complete Brillouin zone in the momentum space.

The expression (11) is quite general for 1D quantum systems. W is al-
ways an interger. I will prove this in class on the blackboard when time
permits. One can easily generalize such an expression for topological invari-
ant to higher dimensions.

1.3 Domail wall (soliton) bound states. Fermion zero mode

Again consider the case of half filling µ = 0. Recall the Hamiltonian K
matrix

K (k) =

(
ε(k) −2i∆(x) sin(ka)

2i∆(x) sin(ka) ε(k)

)
(12)

where ε(k) = −2w cos(ka).
We want to study the engenvalue and states of the Hamiltonian K

matrix when the gap parameter is not a constant, but slowly varying in
space:

∆→ ∆(x) = ∆0 tanh(x/ξ) (13)

where ∆0 is constant, and ξ is a large length scale characterizing the slowly
varying gap function (ξ � a). Here “slow” means the gap function varies
on the scale of several lattice constant or greater.

Here we demonstrate a “semiclassical” analytical approach to find the
solution. The fermi level is set by ε(k) = µ = 0. This gives the two fermi
points:

kL,RF = ∓kF , kF =
π

2a
(14)

Let us restrict ourselves to the vicinity of the “Right” fermi point k =
+π/(2a). From the gap function, ξ−1 sets the low momentum scale (long
wavelength limit), and we are studying physics of |k − kF | � π/ξ. For
this physical regime, expand the single particle spectrum around the Fermi
point,

ε(k) ≈ ε(kF ) + 2w sin(kFa) · ap , p ≡ k − kF (15)

≈ (2wa)p (16)

∆ sin(ka) ≈ ∆ sin(kFa) = ∆× 1 (17)
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In the long wavelength limit, Fourier transform the algebraic Hamiltonian
SK matrix back to the real coordinate space. Equivalently, we could quickly
obtain the real space Hamiltonian matrix by

p → −i∂x (18)

ε(k) → (2wa)(−i∂x) , (use units of ~ ≡ 1) (19)

Then, and we aim to find the engenvalue and states when the gap parameter
is not a constant, but slowly varying in space:

K → Ĥ =

(
2wa(−i∂x) −2i∆(x)

2i∆(x) −2wa(−i∂x)

)
(20)

= σz · (−2iwa)
∂

∂x
+ σy · 2∆(x) (21)

The problem of eigenvalue and eigenfunctions is

Ĥ

(
un(x)

vn(x)

)
= En

(
un(x)

vn(x)

)
(22)

Specifically, we are interested in finding out whether there is a physical zero
mode solution (i.e., En=0 = 0 solution):

Ĥ

(
un(x)

vn(x)

)
= 0 . (23)

For the zero mode, there is a symmetry in exchanging u↔ v. Note

σxĤ σx = −Ĥ (24)

If
(u(x)
v(x)

)
is a solution of E = 0, then so is σx

(u(x)
v(x)

)
:

Ĥ σx

(
un(x)

vn(x)

)
= −σxĤ

(
un(x)

vn(x)

)
= 0 . (25)

The two math vectors must correspond to the same physical state. That
means they can only differ by a complex phase (after normalization),(

v(x)

u(x)

)
= eiθ

(
u(x)

v(x)

)
, (26)

Solving this matrix equation gives

ei2θ = 1⇒ θ = 0, or π. (27)

There are two possible solutions:
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Case of u = v. [
−i2wa ∂

∂x
− i2∆(x)

]
u(x) = 0 (28)

1

u

∂u

∂x
= −∆0

wa
tanh

x

ξ
(29)

Solution is found

u(x) = u(0)

[
cosh

x

ξ

]−∆0ξ
wa

(30)

This is a zero energy fermion state localized around x = 0 (the location of
the domail wall), whose wavefunction decays exponetially

e−|x|/λ , λ = ξ · wa
∆0ξ

=
w

∆0
a (31)

as x→ ±∞.

Case of u = −v. For this case, the solution can be found in the similar
manner (by ∆0 → −∆0 from symmetry). We get

u(x) = u(0)

[
cosh

x

ξ

]+
∆0ξ
wa

(32)

This “mathematical” solution to the above differential equation diverges at
large distance (x→ ±∞), noticing the exponent is positive. This wavefunc-
tion is not normalizable, hence non-physical.

In conclusion, we find only one physical fermion zero mode.

Exercise 1: Expand the Hamiltonian matrix K around the ‘left’ Fermi
point. Find the ‘left-moving’ mode of the zero-energy bound state. Prove
that the eigenwavefunctions take the exactly same expression as (u(x), v(x))
for the ‘Right’ moving mode.

1.4 Majorana fermion.

From lattice to continuum limit, the lattice fermion annihilation operator
may be expressed by the ‘left’ (L) and ‘right’ (R) moving modes, with respect
to the left and right Fermi surfaces (points in 1D),

cj√
a

= ψ̂R(xj)e
ikF xj + ψ̂L(xj)e

−ikF xj . (33)
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[D. Senechal, “Introduction to Bosonization”, cond-mat/9908262, Sec. 3.1,
Eq. (14)]. Each of the left and right moving fermion fields ψ̂ captures the
dynamics of the slowly varying modes in the space, with the factors e±ikF x

extracted for the fast oscillating background.
In terms of original “right” moving fermion operators, the zero mode

obtained above is expressed as follows

γR(x) = u(x)ψ̂R(x)eikF x + v(x)ψ̂†R(x)e−ikF x

= u(x)[ψ̂R(x)eikF x + ψ̂†R(x)e−ikF x] , (by u = v) (34)

In a similar spirit, the left-moving zero mode of the quasiparticle is expressed
by the operator

γL(x) = u(x)[ψ̂L(x)e−ikF x + ψ̂†R(x)e+ikF x] , (35)

(by uL = uR, u = v for both left and right movers). The full fermionic
quasi-particle of zero energy combines the left and right moving modes,

γ(x) = γR + γL =
u(x)√
a

(cx + c†x) (36)

where the last equation was obtained by using (33). One can immediately
verify

γ(xj)
† = γ(xj) , xj = ja, (j labels lattice sites) (37)

In summary, the operator γ(x) is Majorana; it decribes a fermionic zero-
energy state bound to the domail wall (soliton) at x = 0, with a wavepacket
size characterized by λ in (31).
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2 Effective field theory approach to superconduc-
tivity

2.1 Renormalization group analysis of Fermi surface insta-
bility: Polchinski approach

[Ref: J. Polchinski, hep-th/9210046]
Consider a quantum gas of spin-1/2 fermions of mass m whose dispersion

is assumed to take the simple free-particle form: ε(p) = p2/2m, for both
spin σ =↑, ↓. The field theory is described by the action

S0 =

∫
dt

∫
d3p

∑
σ

ψ†σ(p, t)[i∂t − ε(p) + µ]ψσ(p, t) , (38)

The chemical potential specifies the location of Fermi surfaces in momentum
space, with Fermi momentum

kF =
√

2mµ , by
k2
F

2m
= µ . (39)

Note that an important energy quantity, Fermi energy, may be defined as the
chemical potential at zero temperature for a free fermi gas: EF = µ(T = 0).
(EF , kF ) are the charactristic energy and momentun scales of this system.

In the spirit of low energy effective field theory, such that all physical
processes that we are interested in are much below EF , i.e.,

E � EF , |p− kF | � kF

where |kF | = kF . Then, we can expand the energy spectrum along the
Fermi surface, i.e., at |p| = kF :

p = kFΩ + l , l ⊥ Fermi surface (40)

where Ω is a unit vector (solid angle) that parameterizes the Fermi surface
of the up-fermions. For a spherical Fermi surface, Ω is parallel to p, but it
is not necessarily true for general case.

The free part of the effective theory becomes∫
dt

∫
d2Ω

∫ Λ

−Λ
dl
∑
σ=↑,↓

ψ†σ[i∂t − vF l]ψσ (41)

where
vF = |∇pε(p)||p|=kF

and Λ � kF is a high-energy cutoff (Students may consider this equivilent
to the ultra-violet cutoff in particle physics).
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Sliding momentum scale - spirit of RG. Now let us slide down the
momentum scale of physical processes:

κ→ sκ , (s→ 0 means low energy, long wavelength limit) (42)

where κ is our characteristic energy scale and s the rescaling ratio. Long
wavelength limit (low energy limit) corresponds to s→ 0.

Scaling transformation. The action is invariant under the following scal-
ing transformation:

dt→ s−1dt, dΩ→ s0 dΩ, dl→ sdl, ∂t → s∂t, l→ sl, ψσ → s−
1
2ψσ .(43)

Note that the linear spectrum is very important for both the inverse of time
and the longitudinal momentum l to share the same scaling dimension 1.
This case corresponds to the so-called dynamical exponent z = 1.

Turn on a generic two-body scattering between up- and down-fermions

Sint =

∫
dt

4∏
i=1

[∫
d2Ωi

∫ Λ

−Λ
dli

]
Vp1p2;p3p4

×δ3(p1 + p2 − p3 − p4)ψ†↑(p1)ψ†↓(p2)ψ↓(p3)ψ↑(p4) (44)

with pi ≡ kFΩi + li. Now let us analyze how the interaction V should scale
when applying the scaling transformation (43). Some basic power counting
algebra gives

Vp1p2;p3p4 → Vp1p2;p3p4 s
−1+4×2×0+4×1+∆δ+4×(−1/2) ∼ Vp1p2;p3p4 s

1+∆δ

(45)
where ∆δ is the scaling dimension of the δ-function, to be examined in detail
next.

For a scattering process with general incoming and outgoing momenta,
the sum of

Ω1 + Ω2 −Ω3 −Ω4 , (46)

is an arbitary 3-dimension vector in the momentum space and the perpen-
dicular components l′is are expected all samll in magnitude compared with
kF . Therefore, the delta function reduces to

δ3(p1 + p2 − p3 − p4)→ δ3(Ω1 + Ω2 −Ω3 −Ω4) (47)

for all li/kF � 1 and so l’s in the delta function are negligible. An im-
portant consequence is that the δ-function in the integral does not restrict
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the integration of l’s, so not affecting the scaling. That is, for this generic
scattering process,

∆δ = 0 . (48)

Therefore, the interaction (44) for such a general case scales

Vp1p2;p3p4 → s1Vp1p2;p3p4 (49)

when s → 0 approaching long wavelength limit. Such an interaction is
called irrelevant in RG analysis. It is easy to check that field operators of
high powers of ψ’s (e.g., three-body interaction with 6 field operators) are
even more irrelevant.

BCS scattering channel and instability However, a special situation
arises when the sum vector (46) has a dimension lower than 3, hence the
δ-function may restrict the integral of l’s. For example, consider the process
satisfying with the following condition:

Ω1 ‖ −Ω2 , Ω3 ‖ −Ω4 ,

(BCS channel, momenta anti-parallel). One immediately sees that the sum
vector (46) is now actually co-planar (i.e., all 4 Ω’s lie in a common plane),
and has only two independent components in a 3D vectorial space. Therefor
the sum of the 4 vectors is a 2-dimensional vector in nature. Then, the
small momenta, l’s, in δ3(p1 + p2 − p3 − p4) cannot be neglected. The
3-dimensional δ-function restricts the integration over Ω’s in the 2-dim co-
plan and restricts by one dimension the integration over dl’s, so that its
scaling dimension is

∆δ = −1 (50)

Inserting the scaling dimension into (45) gives

Vp1p2;p3p4 → s1+(−1)Vp1p2;p3p4 = s0Vp1p2;p3p4 . (51)

In other words, the interaction has scaling dimension 0 and is called marginal
in RG. The above argument may be formally summarized by

δ3(p1 + p2 − p3 − p4)→ δ2(Ω1 + Ω2 −Ω3 −Ω4)× δ(l1 + l2 − l3 − l4) .

It is marginal in the tree level so far, as we have not included the cor-
rection to the interaction yet, due to quantum scattering.
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One-loop renormalization of interaction in BCS channel. When
the interaction is classically (tree-level) marginal, it is important to look at
quantum corrections. Assume a constant Vp,−p;−p′,p′ = V . To the one-loop
order, the scattering process involving a pair of up and down fermions with
(p1, E) and (−p1, E) gives a correction to the coupling constant,

V ′ = V − (vol)V 2

∫
dω k2

Fd
2Ωdl

i(2π)4

×
(

1

ω − vF l + iωη

) (
1

2E − ω − vF l + i(2E − ω)η

)
(52)

where η = 0+ is infinitesimal and positive definite.
As far as low energy process is concerned, we consider all external mo-

menta ∼ κ and have external energies E ∼ vFκ. Define our renormalized
interaction at this scale, V ′. After performing the integration over ω,

V ′ = V − V 2 (vol)

(2π)3
k2
F

∫
d2Ω

1

2vF
2

∫ Λ

0
dl

1

l − κ

= V + V 2N(kF ) ln
(κ

Λ

)
+O(κ/Λ) (53)

where

N(k) ≡ (vol)

(2π)3

∫
d2Ω

k2

vF
(54)

is the density of states.
RG flow equation can be obtained by differentiating (53) with respect to

κ,

κ
dV

dκ
= V 2N(kF ) (55)

which gives

Vκ =
V0

1−N(kF )V0 ln(κ/κ0)
, κ0 ∼ Λ . (56)

So an attractive interaction, V < 0, grows stronger at low energy. We
conclude that the RG flow is rather conventional for interacting fermions
having a Fermi surface.

2.2 BCS superconductivity: fermionic excitations

In this section, we shall work in finite temperature (Euclidean) path-integral
framework. In order to keel notation compact (to be seen below), we will put
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the system in a finite box of liniear dimension L and take the thermodynamic
limit L3 → 0 after performing all derivations at each calculation.

Let us start with the many-body theory with the free and interacting ac-
tion described in Eqs. (38) and (44). From real to imaginary time formalism,
make the relation:

it→ τ, i∂t → −∂τ , S → −SE (57)

We further focus on the BCS channel:

p1 = −p2 ≡ p , p3 = −p4 ≡ p′ ,

and subsitute the interaction by the following form:

Vp1p2;p3p4 = V (p,p′) (58)

The Euclidean (imaginary time) action reads

S =

∫
dτ
∑
p,σ

ψ†σ(p, τ)[∂τ + ε(p)− µ]ψσ(p, τ)

+

∫
dτ
∑
pp′

V (p,p′)ψ†↑(p)ψ†↓(−p)ψ↓(−p′)ψ↑(p
′) (59)

where the time variable is suppressed in the interaction part to keep notation
simple. The interaction being Hermitian requires

V (p,p′)∗ = V (p′,p) (60)

This theory is invariant under a global U(1) symmetry transformation,

ψσ → eieθψσ (61)

Here we assume the fermion carry “electric” charge e. The attactive inter-
action V induces Cooper pairing between two fermions and when the pairs
condense, superconductivity occurs.

Exercise 2: Check whether the theory defined by the above BCS action
is spin SU(2) invariant.

Order parameter Let Φ denote the quantum average (ground-state ex-
pectation value) of the composite pair field operator,

Φ∗(p) =
1

2
εσσ′〈ψ†σ(p)ψ†σ′(−p)〉 = 〈ψ†↑(p)ψ†↓(−p)〉 (62)
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with εσσ′ an antisymmetric tensor:

ε↑↓ = −ε↓↑ = 1 , ε↑↑ = ε↓↓ = 0 . (63)

The 〈. . .〉 here is over the many-body ground state. We shall not derive the
equation that will govern the value of this order parameter, but instead we
will assume the pair operator has acquired some finite mean field value. We
take Φ to be finite as our starting point for the derivation below and would
like to explore the properties due to the appearance of this order.

When the order parameter Φ aquires a non-zero value,

Φ(p) 6= 0 ,

it signals that the U(1) symmetry is spontaneously broken. Under the U(1)
tranformation,

Φ→ ei2eθΦ (64)

so this quantity is not invariant. If the U(1) symmetry were not broken,
it would have required this quantity to be zero. “Spontaneous” means the
symmetry is broken by the ground state, in this case, it is referred to as
BCS many-body wavefunction (not derived here). A very important point is
needed: the U(1) symmetry is never broken in the Hamiltian or Lagrangian
level.

Mean field theory Once the fermions pair and condense, the order pa-
rameter Φ aquires mean field value. The mean-field-theory action can then
be obtained by decomposing the quartic interaction term into quandratic
terms,

S =

∫
dτ
∑
p,σ

ψ†σ(p, τ)[∂τ + ε(p)− µ]ψσ(p, τ)

+

∫
dτ
∑
pp′

V (p,p′)〈ψ†↑(p)ψ†↓(−p)〉ψ↓(−p′)ψ↑(p
′)

+

∫
dτ
∑
pp′

V (p,p′)ψ†↑(p)ψ†↓(−p)〈ψ↓(−p′)ψ↑(p
′)〉+ · · · (65)

=

∫
dτ
∑
p,σ

ψ†σ(p, τ)[∂τ + ε(p)− µ]ψσ(p, τ)

+

∫
dτ
∑
pp′

V (p,p′)
[
Φ∗(p)ψ↓(−p′)ψ↑(p

′) + ψ†↑(p)ψ†↓(−p)Φ(p′)
]

+ · · ·(66)

where · · · stand for other terms not needed to study the fermion excitation
at the mean field level.
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Energy gap

∆(p) =
∑
p′

V (p,p′)Φ(p′)

∆∗(p′) =
∑
p

V ∗(p′,p)Φ∗(p) =
∑
p

V (p,p′)Φ∗(p) (67)

Using the gap functions introduced above in the mean field action, we
get

SMFT =

∫
dτ
∑
p,σ

ψ†σ(p, τ)[∂τ + ε(p)− µ]ψσ(p, τ)

+

∫
dτ
∑
p

[
∆∗(p)ψ↓(−p)ψ↑(p) + ∆(p)ψ†↑(p)ψ†↓(−p)

]
(68)

In the imaginary time formalism, the time space is [0, β] where β = 1/(kBT )
is the inverse temperature (set kB = 1). The action can be rewritten in
frequency space by performing the Fourier transformation on the fermion
fields,

ψσ(p, τ) =
1√
β

∑
ωn

e−iωnτψσ(p, iωn) (69)

where ωn is the Matsubara frequency,

ωn =
π(2n+ 1)

β
, β =

1

kBT
, n = 0,±1,±2, · · · (70)

Further intruduce a Nambu spinor

Ψ(p, iω) =

(
ψ↑(p, iω)

ψ†↓(−p,−iω)

)
(71)

The action can be written in a matrix form

SMFT =
∑
p,ωn

Ψ†(p, iωn)K (p, iωn)Ψ(p, iωn) , (72)

with

K (p, iωn) =

(
−iωn + ε(p)− µ ∆(p)

∆∗(p) −iωn − ε(p) + µ

)
(73)
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Fermionic quasi-particle spectrum The quasiparticle energy spectrum
can be obtained from the K matrix by the following procedure: 1) Wick
rotating back to real frequency axis,

iωn → ω + iη

2) Determine the zeros
det K = 0

and find the solution for ω. Then find the energy spectrum

E(p) = ±
√

(ε(p)− µ)2 + |∆(p)|2 (74)

2.3 Green’s function, mometum distribution, etc.

In the imaginary time formalism, the Green’s function (also frequently re-
ferred to as propagator in quantum field theory/particle physics) is defined
as

Gab(p, τ − τ ′) = −〈TΨa(p, τ)Ψ†b(p, τ
′)〉 (75)

where the indices a, b = 1, 2 span the 2-dimensional Nambu spinor space,
and T denotes a time-ordered product. For example, G11 = −〈Tψ↑ψ†↓〉. In
path-integral formalism, the time-order is implicit, and one does not need
to keep this time-order operator at all.

In momentum-frequency space, the Green’s function matrix reads

Gab(p, iω) = −〈Ψa(p, iω)Ψ†b(p, iω)〉 (76)

(Here we work in the path-integral formalism and the fields are Grassman
variables now.)

Computation of G The Green’s function matrix is read off from the
inverse of the K matrix [let p ≡ (p, iωn)],

G(p) = −K −1(p) = − 1

(iωn − Ep)(iωn + Ep)

(
−iωn − ε(p) + µ −∆∗(p)

−∆(p) −iωn + ε(p)− µ

)
=

1

(iωn − Ep)(iωn + Ep)

(
iωn + ε(p)− µ ∆∗(p)

∆(p) iωn − ε(p) + µ

)
(77)
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Use of G The Green’s functions are powerful tools to obtain experimen-
tally measurable physical quantities. Here we show how to obtain the par-
ticle momentum distribution (occupation number), nσ(p), for the orginal
spin σ fermions (not the quasiparticles).

Take n↑(p) as example.

n↑(p) = 〈ψ†↑(p, τ)ψ↑(p, τ)〉

= − 1

β

∑
ωn

〈ψ↑(p, iω)ψ†↑(p, iω)〉eiωη

= − 1

β

∑
ωn

(−)G11e
iωη

=
1

β

∑
ωn

iωn + εp − µ
(iωn − Ep)(iωn + EP )

eiωnη

=
1

2πi

∮
C

ω + εp − µ
(ω − Ep)(ω + Ep)

eωηf(ω) (78)

where C is a contour in the complex ω-plane encircling all the poles of the
integrand except the factor of f(ω) in a positive sense, and f(ω) = 1

eβω+1
is

the Fermi-Dirac distribution.

n↑(p) =
1

2

(
1 +

εp − µ
Ep

)
f(Ep) +

1

2

(
1− εp − µ

Ep

)
f(−Ep)

= u2
pf(Ep) + v2

pf(−Ep) (79)

where

u2
p =

1

2

(
1 +

εp − µ
E(p)

)
, v2

p = 1− u2
p (80)

Exercise 3: Calculate n↓(p).

2.4 Weinberg Effective Field Theory approach to broken U(1)
symmetry and superconductivity

[Refs.: S. Weinberg, Theory of Quantum Fields, Vol 2, 1996, §21.6; more
detailes in his earlier article, Prog. Theor. Phys. Suppl. No. 86, 43 (1986).]

Consider a microscopic model of spin-1/2 fermions, ψσ(x, t), of mass m
interacting with each other by a short-range (δ-like) potential. The La-
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grangian is

L =

∫
d3xψ†σi∂tψσ −H (81)

=

∫
d3xψ†σ

[
i∂t +

∇2

2m
+ µ

]
ψσ − g

∫
d3xψ†↑ψ

†
↓ψ↓ψ↑ (82)

where the coupling constant is assumed attractive, g < 0.
Now further assume the fermions carry charge e and the electric and

magnetic gauge field Aµ = (φ,A) are present, where φ and A are the scalar
and vector potential, in a standard convention. (In our convention, electrons
have charge e = −|e| < 0.) The Lagrangian now becomes

L[ψ,A] =

∫
d3xψ†σ

[
(i∂t + eφ) +

(∇− ieA)2

2m
+ µ

]
ψσ − g

∫
d3xψ†↑ψ

†
↓ψ↓ψ↑(83)

This theory has the charge U(1) and spin SU(2) symmetry. For example,
one can verify that the Lagrangian is invariant under the local U(1) gauge
transformation defined as

ψσ(x) → ψ′σ(x) = ψσ(x)eieλ(x) (84)

A → A′ = A +∇λ (85)

φ → φ′ = φ+ ∂tλ (86)

where x ≡ (t,x) is a 4-component vector.
Here is an important starting point in our approach. We shall take a

superconducting state as our starting point. The physical reason is of course
that the RG analysis in the preceding section showed that any attractive
interaction, no matter how weak at initial condition, shall drive the system
to a BCS paired state. Take the superconducting order parameter field

∆(x) = −g〈ψ†↑(x)ψ†↓(x)〉 (87)

and study the case when it has a non-vanishing amplitude, ∆0, to be assume
constant below. In general, the order parameter field can be written as

∆(x) = ∆0e
i2eθ(x) (88)

where θ(x) is the phase field and 2e is because of the fermion pair for ∆.
With the superconducting order takes place, we can replace the fermion

pair field product in the Lagrangian by its mean field value, plus quantum
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fluctuations of the order parameter field. Keeping terms coupled to fermions,
we find the eff Then,

L[ψ,A, θ] =

∫
d3xψ†σ

[
(i∂t + eφ) +

(∇− ieA)2

2m
+ µ

]
ψσ

+

∫
d3x

[
∆0e

−i2eθ(x)ψ↓ψ↑ + h.c.
]

(89)

The fermion fields see the phase field through an off-diagonal potential,
which is non-uniform for a generic phase variable in space and time. We
know the θ field must disappear in the effective theory if it becomes space-
time independent, due to the U(1) symmetry. So far, this is not obvious
from the Lagrangian above.

’Rotate’ the fermion field at each space and time point as follows, so to
define a new fermion field,

ψσ(x) = ψ̃σe
ieθ(x) . (90)

This ‘rotation’ is designed to eliminate the phase θ depedence in the off-
diagnal potential term. The phase field re-appear in the transformed theory
through terms of space-time derivatives. Therefore, we obtain

L[ψ̃, A, θ] =

∫
d3xψ̃†σ

[
i∂t + e(φ− ∂tθ) +

[∇− ie(A−∇θ)]2

2m
+ µ

]
ψ̃σ

+

∫
d3x

[
∆0ψ̃↓ψ̃↑ + h.c.

]
. (91)

The U(1) symmetry transformation works on the new fields as follows,

ψ̃σ(x) → ψ̃′σ(x) = ψ̃σ(x) (92)

∆0 → ∆′0 = ∆0 (93)

θ → θ′ = θ + λ (94)

A → A′ = A +∇λ (95)

φ → φ′ = φ+ ∂tλ (96)

From what we have learned in the last section, a finite superconducting
order parameter ∆0 (the gap parameter in the above) opens a gap in the
fermionic excitation. One then can integrate out all gapped fermionic de-
grees of freedom in the path-integral formalism, that is, to find a low energy
effective field theory for the supercinductor, valid for the enegy scale below
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∆0. Then, the effective Lagrangian for the gauge and phase fields is found
to take the following general form

Leff [A, θ] =

∫
d3x

{
enf (φ− ∂tθ) + e〈J〉 · (A−∇θ)−

nfe
2

2m
(A−∇θ)2

−Ct2(φ− ∂tθ)2 + . . .
}

(97)

where nf = 〈ψ̃†σψ̃σ〉 = 〈ψ†σψσ〉 is the fermion number density, J is the fermion
number current, and . . . standard for higher powers of derivatives. A few
remarks are in order. First, in our approach (i.e., rotate fermion fields),
the first 3 terms can be obtained without the need of real, hard calculation
(not to involve calculation of integrals but basic algebra). They appear in
Hartree-Fock level. Second, the current average is taken over with respect
to the fermion action, and because all fermion modes are gapped, there is
absolutely no current flow in the ground state (T=0). At finite tempera-
ture, it can be a small amount. Third, the 4th term comes from “vacuum
polarization” of a pair of particle and hole, and it is equivalent to a one-
loop Feynman diagram. I will leave out the detail, but only state that the
coefficient C2 is positive. Fourth, the phase field can only enter the effec-
tive theory through the ingredients (φ − ∂tθ), (A − ∇θ) and their powers.
This is required by the U(1) symmetry, because only such combinations are
invariant under the U(1) transformation of the new fields.

Exercise 4: The fermion current is J = − i
m [ψ̃†σ∇ψ̃σ−(∇ψ̃†σ)ψ̃σ] Show that

〈J〉ψ = 0 as ψ̃ is gapped. This is sometime called paramagnetic current.
A number of important properties follow from the effective theory (97).

Flux quantization Deep inside the superconductor, expect no boundary
effect, the system is at energy minimum. Note the energy is the minus of
the Lagrangian. Minimizing the quadratic term (A−∇θ)2 gives

A = ∇θ (known as pure gauge) (98)

Consider a closed path C enbedded deep inside the superconductor. The
magnetic flux through it is∫ ∫

S
B · ds =

∮
C

A · dl =

∮
C
∇θ · dl = ∆θ (99)

From the definition of θ in the order parameter (88), we must have (2e/~)∆θ =
2πn with n ∈ integer. Therefore,∮

C
A · dl =

nπ~
e

, n = 0,±1,±2, ... (100)
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Here I have restored ~.

Meissner effect. London peneration depth. Now consider some-
where near the surface of a superconductor, and in this case the magnetic
field is expected not vanishing to a certain depth, known as London pene-
tration delpth. Here we show how to quickly derive it in our approach.

Redefine the gauge field by a U(1) gauge transformation, so to absorb
the phase dependence,

A′ = A−∇θ, ∇×A′ = µ0H 6= 0 (101)

as we expect the magnetic field B = µ0H present. Find the diamagnetic
current,

j =
δL

δA′
= −

nfe
2

m
A′ . (102)

From Maxwell equations,

∇×H = j ,⇒ ∇× (∇×H) = −∇2H = ∇× j (103)

Insert (102) into (103),

∇2H =
nfe

2µ0

m
H (104)

which is the well-know London equation, with London penetration depth

λL =

√
m

nfe2µ0
in SI units - this note (105)

=

√
mc2

4πnfe2
in Gauss units (106)

The expression of λL can be found in [Tinkham, 1996, 2nd Ed., Page 6,
Eq.(1.9); or Fetter and Walecka, Page 422, eq. (49.13)].

Note that the usual expression of London penetration depth is in terms
of the superfluid density ns in place of the total fermion density nf . In BCS
theory, the two are related as follows:

ns(T )

nf
=

 1−
(

2π∆0
kBT

)1/2
e−∆0/kBT , T → 0

2
(

1− T
Tc

)
T → Tc

(107)

[Fetter and Walecka, Page 460, eq. (52.34)].
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Important limit. In the BCS model, the superfluid density at zero tem-
perature limit is equal to the total electron desnity, not that of the condensed
pairs.

Exercise 5: Show that an electronic many-body system described by the
effective Lagrangian (97) is superconducting, i.e., has zero resistivity, inde-
pendent of the details of the microscopic model.


